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ABSTRACT  
Modern day warfare is characterized by increasing complexity as well as by smart and technologically adept 
enemies. To tackle some of the complexities of modern warfare, machine learning (ML) based techniques have 
recently provided suitable means to automate tasks on the battlefield. However, smart enemies equipped with 
ML techniques not only engage in fair competition on the battlefield, but craft malicious methods using 
strategies like deception and covert attacks to break ML algorithms and gain an unfair advantage. To counter 
these threats, ML techniques used on automated battlefield systems must be made robust against adversarial 
attacks. 

We analyse the problem of adversarial learning in a competitive scenario in the context of a reinforcement 
learning algorithm called Learning from Demonstrations (LfD). In LfD, a learning agent observes 
demonstrations of operations done by an expert to learn to perform a task quickly and effectively.  LfD has been 
used successfully in military operations such as autonomous search and reconnaissance using teams of robots, 
or, autonomous grasping to deactivate improvised explosive devices. However, malicious enemies could exploit 
LfD by planting adversarial experts that either give incorrect demonstrations or modify legitimate 
demonstrations to make the learning agent fail in its task. To address this problem, we first analyse different 
demonstration modification strategies that could be used by an adversarial expert within the LfD framework, in 
terms of the modification costs expended by the adversary and the degradation in task performance effected by 
the modification on the learning agent. We then propose a novel concept using game-playing between the 
adversary and the learning agent that can be used by the learning agent to strategically learn from potential 
adversarial expert demonstrations via LfD without significantly degrading its task performance. We present 
evaluations of our proposed techniques for robust learning with adversarial modifications of expert 
demonstrations in an Atari-like game called LunarLander within the AI-Gym environment. 

1.0 INTRODUCTION 

Consider a state-of-the-art, military-grade missile defence system - precise sensors, top-of-the-line hardware 
components and sophisticated algorithms are used to ensure that it operates decisively and accurately to thwart 
enemy intrusions. The algorithms driving most modern military systems strategically employ artificial 
intelligence (AI) enabled machine learning (ML) algorithms to enhance their performance by making 
autonomous decisions in complex situations and gain advantage over the enemy. For example, a missile defence 
system might use ML in fog-of-war to predict the track of an incoming missile with razor sharp accuracy even 
when there is sparse and noisy information available about the missile’s launch coordinates or when the missile’s 
trajectory is observable intermittently or poorly. One of the popular methods used to enable ML techniques 
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operate autonomously is reinforcement learning (RL) and learning from demonstration (LfD)[1]. The LfD 
concept draws inspiration from a teacher-student setting where a teacher gives demonstrations of the correct way 
to perform a task to a student. The student then mimics the teacher’s demonstrations, while adapting the 
demonstrations suitably to account for small variations in the task. The main advantage that LfD affords is that 
observing demonstrations from an expert teacher enables the student to learn the task more quickly and 
effectively as compared to learning via self-explorations of doing the task without the teacher. In AI-based LfD, 
a learning agent observes demonstrations of operations given by an expert in the form of trajectories 
(observation-action sequences) to learn to perform a task. LfD has been successfully used in military operations 
such as autonomous search and reconnaissance using teams of robots, and, autonomous grasping to deactivate 
improvised explosive devices [2].  

  

 
  

Figure 1. (Left) Effect of adversarial trajectories on policy learned using LfD for an autonomous driving setting. (Right) 
In our proposed approach, clean (green) and adversarial (red) trajectories are first equi-partitioned. Policies are then 
learned for each partition after accepting or rejecting trajectory parts using options (golden dashed lines) or using 

conventional reinforcement learning for the un-partitioned trajectories (blue dashed line) 

In the real-world, however, adversaries pose a major threat to AI-based systems using LfD: malicious entities 
could exploit LfD by planting adversarial experts that either give incorrect demonstrations or modify legitimate 
demonstration data (for example, by man-in-the-middle attacks) to make the learning agent fail in its task. An 
example is illustrated in Figure 1, where adversarial demonstrations could lead to an incorrectly learned policy 
for a driving manoeuver and result in crashing an autonomously driven vehicle. Researchers [5, 6] have similarly 
shown that noisy or incorrect demonstrations could be successfully used by an adversary to misguide an LfD-
based learning agent to learn and perform incorrect actions such as falling down while trying to perform rather 
simple tasks like walking or kicking a ball. Simultaneously, researchers have also started to investigate solutions 
to the adversarial LfD problem. Principal solution approaches proposed include augmenting demonstration 
trajectories used by the learning agent with a noise variable to represent possible deviations [3], or incorporating 
a risk term in the learning framework to capture the effect of incorrect trajectories on the learned task [4]. 
However, existing approaches to adversarial LfD have certain important limitations: adversarial demonstrations 
have either to be marked or labelled appropriately so that the learning agent avoids learning from them, or, for 
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commensurate demonstrations, the number of correct trajectories must far exceed the number of adversarial 
trajectories, so that the adversarial demonstration’s effect on the learned task is minimal. However, both these 
requirements are difficult to realize in real-life military problems as it is infeasible to label demonstration data as 
clean versus malicious, or, acquire large quantities of demonstration data, clean or adversarial. 

In this paper, we propose a novel technique that can be used by a learning agent to build robustness against 
adversarial demonstrations within LfD using a game-like framework between the learning agent and 
demonstrator, without requiring large quantities or correct versus adversarial labels on demonstration data. We 
have presented a preliminary evaluation of the proposed technique using an Atari-like game called LunarLander 
within the AI-Gym environment. Our results show that using our proposed technique a learning agent can 
successfully learn to land the LunarLander in the presence of adversarial demonstrations. 

2.0 ADVERSARIAL EXPERT DEMONSTRATIONS FRAMEWORK 

We consider a scenario where a learning agent has to perform tasks within an environment by learning via 
reinforcement learning from demonstrations (LfD) of the tasks given by experts. Some of the experts could be 
adversarial and modify the trajectory demonstrations with an intention of making the learning agent fails to 
perform the task correctly while following the modified demonstration. In the rest of the paper, we refer to 
adversarial experts as experts for the sake of legibility. The LfD framework is formalized using a Markov 
Decision Process (MDP) [12]. The output of the LfD algorithm is a policy that gives a state to action mapping 
for performing a task. RL learns a policy via a process called training during which it explores the environment, 
observes the state-action-reward pairings received during the exploration, and finally selects sequences of state-
action-reward pairings that lead to higher expected rewards as its policy.  

Demonstrations from experts are given in the form of sequences of state-action-reward tuples called trajectories.  
Expert trajectories could be either benign or adversarial. Benign and adversarial expert trajectories respectively 
demonstrate the correct and incorrect way of doing the task and either aid or hinder the learning agent to learn to 
perform the task. Expert demonstrations are incorporated into the agent's learning to perform the task using an 
LfD algorithm called DAGGER[1]. DAGGER uses supervised learning from expert-demonstrated trajectories to 
learn a policy but adds a weight parameters, β, that denotes the learning agent’s weight or trust in incorporating a 
trajectory into its learned policy. 

2.1 Trajectory Modification 
To modify a set of trajectories, an adversarial expert adds noise at strategic locations within a clean set of 
trajectories. The noise could be added in the states, actions or rewards of the trajectory data. The strength, σadv, 
of the adversary determines the number of clean trajectories that are modified within the clean trajectory set. 
Evidently, a stronger adversary could distort clean trajectories quickly and misguide the learning agent more 
aggressively. However, highly modified trajectories are also easier to detect as malicious by the learner. 
Therefore, it makes sense for the adversary to modify trajectories strategically so that the modified trajectory has 
the desired effect of misguiding the learner, while simultaneously evading detection by the learner. To achieve 
this balance between modification and evasion, we propose to use a trajectory modification technique on the 
adversary that is inspired by adversarial text modification [14]. Here, the adversary calculates the gradient of the 
reward function with respect to states within a trajectory, selects the states within the trajectory that have the 
maximum and minimum gradient and replaces the state with the maximum reward gradient with the one that has 
minimum reward gradient, along with the action for the replaced state. This operation is repeated for a certain 
number of iterations and for a certain number of trajectories corresponding to the strength of the adversary. The 
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intuition behind this trajectory modification technique is that regions in the trajectory that have higher reward 
gradients have higher contributions towards the optimality of the policy1 learned by the learning agent. If the 
states in these regions could be replaced by states that correspond to lower gradients, the resulting policy learned 
will be further from optimal and likely result in misguiding the learning agent towards failing to perform its task. 

The adversarial trajectories are injected into the expert trajectory set used to train the learner’s LfD algorithm. 
The problem facing the learner is to selectively learn from clean or valid trajectories while discarding 
adversarially modified trajectories. This task is not straightforward, as trajectory data cannot be labelled as clean 
versus adversarial by humans via inspection. Neither can statistical divergence between trajectories offer a 
reliable method for detecting adversarial trajectories. Because there might be few, albeit clean trajectories that 
demonstrate difficult manoeuvers in less-frequented parts of an environment – giving high divergence from 
frequently demonstrated, clean trajectories, yet being valid demonstrations of the task at hand.  

To address the problem of detecting adversarial trajectories, we first observe that adversarial trajectories might 
not be adversarial in their entirety; there could be portions of an adversarial trajectory that are clean and valid 
demonstrations and could be used by the learner to improve its task learning. It makes sense for the learner to 
retain and learn from the clean portions of trajectories and discard the adversarial portions. The decision problem 
facing the learner can be written as: given a trajectory that is partitioned into parts, for every part, decide whether 
to accept and learn from it or discard it.2 On the other hand, the problem facing the adversary is to determine an 
appropriate modification strength, σadv, so that it can fool the learner into making an incorrect decision to retain 
and learn from an adversarial trajectory, or part, thereof. To achieve this, we formulate the interaction between 
the expert and learner as a 2-player game, as described below. 

                                                      
1 We follow the conventional definition of an RL policy that finds state-action sequences that maximize expected rewards [11]. 
2 We assume that the length of the adversary’s modifications to a trajectory is much smaller than the size of a partition, and, 

consequently, the adversarial part of a trajectory is limited within a single partition. 
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3.0 GAME-PLAYING TO COUNTER ADVERSARIAL DEMONSTRATIONS 

The game between the expert and learner consists of rounds, at each round the expert makes the first move 
followed by the learner. During its move, the expert selects an adversarial strength value, σadv, corresponding to 
the amount of modification it plans to do on the trajectories. σadv, = 0 corresponds to no trajectory modification, 
while σadv, = 1 represents all data in the trajectory is modified. The exact value of σadv, is not revealed to the 
learner. The learner moves next: it receives the trajectories from the expert, selectively accepts of rejects 
trajectories based on trajectory acceptance threshold values, denoted by oThr and fThr, and updates its policy from 
the data in the accepted trajectories. For the policy update, the learner uses the options framework [9] that first 
partitions a long horizon trajectory into smaller trajectories, then uses DAGGER algorithm to learn a policy from 
trajectories in each partition, and finally connects the policies in successive partition using a technique called 
policy chaining. A schematic for the learner’s policy update method is illustrated in Figure 1 (Right). The expert 
(learner) wins the game if the learner accepts (discards) to learn from the majority of the trajectories that the 
expert had modified. The game then proceeds to the next round. The expert and learner use the history of wins 
and losses to determine an appropriate adversarial strength value of σadv and, learner threshold values, oThr and 
fThr, for the next round, respectively. Algorithms 1 and 2 show the pseudo-code of the algorithms used by the 
learner and expert for playing the game. 

3.1 Measuring Trajectory Distances 
A critical aspect of the learner’s decision is its ability to measure distances between a known, clean set of 
trajectories and a newly demonstrated trajectory. We propose to use two metrics for this: (a) Occupancy 
Measure, which gives the fraction of times different states are visited in a set of trajectories. Note that the 
occupancy measure only relates to the states that were visited by a trajectory but does not account for the order 
in which they are visited; and, (b) Fréchet Distance, which gives a real-valued distance or similarity metric 
between a pair of curves, while accounting for the location and ordering of the points along the curves The 
Fréchet distance measures the maximum distance between possible couplings of pairs of points along two 
curves. The minimum possible Fréchet distance value is 0 when two curves coincide with each other higher 
values denote the degree of divergence between the curves.  
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Algorithm 1. Algorithm used by the learner to accept or reject trajectory demonstrations. 

 

Algorithm 2. Algorithm used by the expert to modify clean trajectories  

Input:  ΤC: set of known, clean trajectories 
Output: Τd: set of demonstrated trajectories 
 
Update adversarial strength parameter σadv, 0 <= σadv, <=1, based on game outcomes history 
Τd = Select fraction σadv of trajectories from ΤC 
for each trajectory τd in Τd : 

∆ = Reward gradients w.r.t. state in τd 
for nflips iterations: 

smin , smax = arg mins(∆), arg maxs(∆) 
smax = smin in τd 

overwrite action for replaced state smax with a’ ≠  Π(smax) 

return Τd 

Input:  ΤC: set of known, clean trajectories 
 Τd: set of demonstrated trajectories 
Output: Policy learned from demonstrated trajectories 

τAcc = {} // set of accepted trajectory partitions 
{Τc, i} = Divide ΤC into N equal partitions 
// learn policy for partition i 
Π i = policy learned from ΤC, i using DAGGER algorithm  
 
Update oThr, fThr based on game outcomes history 
for each demo trajectory τd in Τd : 

{τd, i} = Divide trajectory τd into N equal partitions 
For each partition τd, i : 

o = occupancy measure between τd, i and ΤC, i 

f = average Fréchet distance between τd, i and ΤC, i 

if (o < oThr AND f < fThr) 
add <τd, i , βhi > to τAcc 

elif (o < oThr OR f < fThr) 
add  <τd, i , βmid > to τAcc 

else 
discard τd, i 

 
Update learned policy Πι using <τd, i , β* > using DAGGER algorithm 
Chain partitioned policies Πι  into single policy Π 
return Π 
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4.0 EXPERIMENTAL RESULTS 

 

Figure 2. A snapshot of the LunarLander environment used for our experiments. 

We report some preliminary results from our proposed game-based technique for learning with adversarial 
trajectories. For our evaluations, we used the discrete LunarLander environment available within AI Gym. The 
problem consists of landing an airborne two-legged spacecraft at a specific location called the landing pad within 
a 2D environment akin to the surface of the Moon. A snapshot of the game environment is shown in Figure 2. 
The state space consists of an 8-dimension vector given by the 2-D coordinates of the center of the spacecraft, 2-
D linear velocity, orientation and angular velocity and whether both legs of the spacecraft are on the ground. The 
initial state of the spacecraft consists of random coordinates towards the top of the environment and random 
initial velocity. The action space of the spacecraft consists of four actions: to fire its main, left or right engines or 
do nothing (no-op). The agent receives a reward of 320 points of landing on both legs on the landing pad, a 
penalty of -100 points for crashing, while manoeuvring the spacecraft incurs a penalty of -0.3 for using the main 
engine and -0.03 for the left or right engine For our baseline reinforcement learning algorithm we used the deep 
Q -network (DQN) algorithm available via stable baselines. The algorithms were implemented using the 
following open source libraries: Tensorflow 1.15, OpenAI Gym 0.18 and stable baselines 2.10. The clean 
trajectory data set consisted of 1000 trajectories generated using stable baselines – generate-expert-trajectory 
method, each trajectory contained about 200-300 state-action-reward sequences. 

Table 1 shows the effect of different adversarial strength values, σadv, on the quality of the task performed by the 
learner after learning from the trajectory data, measured in terms of the reward received by the learner. As shown 
in the table, higher values of σadv result in poorer task performance by the learner. The learner’s performance 
starts to deteriorate from around σadv > 0.3, and it loses its ability to correctly perform the task of landing the 
LunarLander on the landing pad even once, for σadv,>= 0.54.  
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Table 1. Learner rewards for different amounts of adversarial trajectory modifications  

Adversarial 
Strength (σadv) 

Average 
Reward 

Standard 
Deviation 

Median 
Reward 

Maximum 
Reward 

Minimum 
Reward 

Clean 255.442 59.684 269.892 321.466 4.208 

0.09 249.317 72.815 273.523 317.399 -24.531 

0.27 223.216 108.883 269.182 319.449 -205.077 

0.36 12.594 116.8456 10.6957 307.636 -348.0903 

0.54 -223.1203 152.946 -197.742 47.818 -645.412 

0.81 -492.673 199.096 -569.918 55.339 -773.953 

 

Figure 3 shows a comparison of the rewards received by the learner agent without (left) and after (right) using 
our proposed game based framework. Overall, the learner using the proposed game framework is able to 
recuperate from failing to perform the task due to adversarial modifications, as reflected in the higher rewards. 

 

Figure 3. Rewards received by learner agent before (left) and after (right) using proposed game 
based framework. 

5.0 CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we described a novel approach using a game based framework to build robustness against 
adversarial expert demonstrations that could be used by a learning agent to learn discerningly from potentially 
adversarial experts. This is our first step in this direction and there are several interesting directions to explore. A 
few planned directions include calculating the parameter updates of σadv, oThr and fThr done by the expert and 
learner at the end of each round using game theory based techniques like Nash equilibrium or counterfactual 
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regret; not revealing the game outcome – win or loss, to the expert, rather have the expert infer the game 
outcome by observing the learner’s performance or rewards from the task. Recently, several frameworks 
relevant to our problem have been proposed including generalized adversarial imitation learning (GAIL) [7] and 
option-critic architecture [8]. These frameworks could be integrated with our proposed game-based framework 
for adversarial LfD to improve its performance. We believe that further exploration of these topics along the 
directions proposed in this paper will enable robust, reliable and effective machine learning for military 
applications. 
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